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ABSTRACT 
Two numerical methods, based on high order finite volume formulations and upwind schemes, are used 
to compute the two- and three-dimensional flow field in a transonic nozzle. The influence of numerical 
diffusivity, boundary treatment and mesh structure is explored for inviscid and turbulent configurations. 
First order computations provide significantly different inviscid results. However, high order methods lead 
to similar solutions. An explanation of the error generated through the Shockwave is proposed in this case. 
The two-dimensional interaction of the shock with the thin turbulent boundary layer developing on the 
bump wall is also presented. Good agreement between both approaches is obtained considering the rapid 
thickening of the boundary layer due to the shock. Furthermore, the downstream velocity recovery is 
almost identical. Only slight discrepancies occur in the main flow, near the outer edge of the boundary 
layer. These seem to be related to the way the turbulence model deals with the free stream turbulence. 
Finally, preliminary three-dimensional unstructured turbulent results are presented and discussed. 
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INTRODUCTION 
Two CFD programs based on high order finite volume formulations and flux vector splitting 
have been developed at the LMFA1. These were designed to treat transonic flows, described by 
the Navier-Stokes equations, in two or three dimensions. It was required that the methods could 
accurately resolve shocks, and their interactions with walls and boundary layers. The methods 
used are currently well known, but the present work offers coherent solutions in applied CFD, 
from spatial discretization, through flux vector splitting, to boundary condition treatments. 

Our purpose is to compare both approaches, their accuracy and their flaws, through an inviscid 
and turbulent gas dynamic problem derived from the Adamson nozzle2. 

DESCRIPTION OF THE NUMERICAL METHODS 
The first method is designed to compute three-dimensional unsteady flows in turbomachinary 
where interactions of waves and aeroelastic coupling between flow and blades occurs1. It is 
based on a MUSCL finite volume formulation3 over moving structured meshes. It uses the Van 
Leer flux vector splitting technique, with the Mulder limiter which controls spatial accuracy in 
the vicinity of discontinuities4. It is hybridized according Mach Number with a classical centred 
scheme to circumvent its poor behaviour near no-slip walls5. The viscous terms are computed 
by a second order centred scheme, and turbulence effects are described by a basic algebraic eddy 
viscosity model6. Natural boundary conditions, including symmetry, slipping walls and non 
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reflective conditions, are implemented by mean of compatibility relations, using the interior time 
scheme7. The time discretization involves the explicit forward Euler formula. The whole scheme 
is built to ensure coherence in time with particular attention being paid to avoiding numerical 
phase differences for the transient solution. It is subsequently referenced as the structured or 
Van Leer approach. 

The aim of the second method is to provide a means of predicting steady two and 
three-dimensional internal turbulent transonic flows involving chemical reactions8. To take into 
account complex geometries and to allow local grid refinement, unstructured finite element 
meshes are used. The finite volume integration cells are built around each node by means of 
the medians9. The approximate Riemann solver of Roe with the Van Albada limiter is employed. 
The diffusive and source terms are integrated using a Galerkin finite element formulation, with 
mass lumping approximation for time integration10. A classical high Reynolds number k-ε 
model11 and wall laws are used to model turbulent flows12. A linearized implicit time scheme 
is employed to accelerate the convergence towards the steady-state solution13,14. This is based 
on a first order Taylor expansion in time of the conservation equations. Inviscid terms are 
computed along edges using the jacobian matrix expression of Steger and Warming, and the 
viscous effects are linearized according to a finite element approach15,16. Local time stepping is 
employed such that at each node the solution is allowed to advance in time at the maximum 
rate compatible with a fixed CFL number and the size of the surrounding cell17. The boundary 
conditions are implemented using explicit compatibility relations18, and a weak formulation, 
where fluxes on all boundaries are prescribed. This approach is subsequently referenced as the 
unstructured or Roe method. 

DESCRIPTION OF THE TEST CASE 
Both methods are used to compute inviscid and turbulent compressible steady flow fields in a 
three-dimensional nozzle. Its shape is a modified derivation of that used by Adamson and Liou2, 
and it is extensively described by Ott, Bölcs and Fransson19. The geometry consists of a flat 
channel with 10% thick sinusoidal bumps on upper and lower walls. Its width is constant, and 
equals half of the inlet height. The problem is bi-symmetric with respect to the axis of the nozzle. 
A perspective view, including the three-dimensional mesh, is given in Figure 1. Using non-
dimensional lengths, the nozzle is 2.0 long, 0.8 high and 0.4 wide. The bump is centred around 
X=0.5 and its overall length is 4/3. 

The non-dimensional inlet conditions are such that the total pressure equals 0.9341, the total 
temperature is 0.7710 and there are no transverse velocity components. The inviscid outlet static 
pressure equals 0.6520, and it is lowered to 0.6350 in turbulent computations to ensure the same 
shock position on the axis in both cases. The flow is transonic, with a shock in the nozzle. Its 
position is visible in Figure 2, where iso-Mach number lines are plotted. The Mach number 
varies from 0.6 to 1.4. 

The reference conditions are such that the length is 0.1 m, the velocity is 358.58 m s - 1 , and 
the density equals 1.3926 kg m - 3 . The specific heat ratio is γ = 1.4, and the perfect gas constant 
equals r=287 J kg - 1 K - 1 . The turbulent Reynolds number is 106. 

A typical two-dimensional inviscid structured mesh with 82 × 26 nodes, is shown in Figure 3. 
The finite element mesh is obtained by dividing each quadrangle into two triangles in two 
dimensions, and each hexahedron into six tetrahedrons in three dimensions. The upper boundary 
is treated as a wall, with either slip or no-slip conditions. The lower boundary is always treated 
as an axis of symmetry. The mesh is adapted around the shock position, with a longitudinal 
ratio of 10 between the longest and the shortest cells. On the other hand, the transversal cell 
size is function of a geometric ratio, from 1.1 for inviscid computations to 1.3 for turbulent 
computations. 

Profiles of representative variables are subsequently presented. In each figure, profiles along 
the axis of the nozzle are in the lower left corner, with the related rules; while profiles on the 
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bumped wall are plotted in the upper corner, with the abscissa rule printed on the top of the 
figure and the ordinate rule printed on the right. The non-dimensional static pressure is displayed, 
while what is referenced as the total pressure is the difference between the local total pressure 
and the inlet total pressure, non-dimensionalized by the inlet total pressure. 
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INVISCID COMPUTATIONS 
As the lateral walls are flat, the inviscid flow is two-dimensional with no variations in the width 
direction. In this case, true two-dimensional unstructured computations were thus performed, 
while a three-dimensional mesh with only two layers of cells and symmetry conditions in the 
non-revealing direction, were used for structured simulations. The inlet flow field was assumed 
uniform. 

First order inviscid computations 
Previous comparisons of first order inviscid computations of shock tube flow problems revealed 

only slightly different results1, but this is not a general conclusion. In this nozzle test case, the 
static pressure profiles obtained are quite different (Figure 4). The unstructured method computes 
a more diffuse shock, upstream of the position found by the structured approach. Inlet static 
pressures are lower, while outlet static pressures and inlet total pressures, which are imposed 
boundary conditions, are well preserved. Considering the total pressure profiles (Figure 5), the 
same behaviour is noticeable. Whereas total pressure should be constant for isentropic flows, 
i.e. upstream and downstream to the shock, errors of 2% or 3% are introduced by both methods, 
mainly near the curved wall. In the convergent part of the nozzle, the total pressure is 
overestimated, while it is underestimated in the divergent section. Since numerical losses cause 
a reduction in total pressure upstream of the shockwave, and the exit static pressure is unchanged, 
the shockwave position is shifted towards the inlet. As the error due to the unstructured approach 
is the biggest (higher than 4%), the computed shock is on the left of the one found by the 
structured method with an error of 2%. A puzzling result is noticeable on the total pressure 
profiles (Figure 5). Both methods exhibit an undershoot at the shock position, which is surprising 
for first order accurate schemes in space, presumed to produce monotone solutions. This 
behaviour exists along the shock, from the axis to the wall. 
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The flow fields computed with first order schemes exhibit the right behaviour, but the errors, 
mainly on total pressure levels, make them unreliable for quantitative comparisons, if not for 
qualitative ones. Furthermore, significant differences were noticed between the two approaches. 

High order inviscid computations 
The spatial accuracy in the following results has been increased to second order. The static 

pressure profiles are shown in Figure 6. In this case, the results are similar, with differences much 
smaller than those found in the first order computations (Figure 4). The profiles are nearly the 
same on the axis where the flow field is one-dimensional, and they are close to the one-dimensional 
analytical solution. However, there are greater differences on the wall, where the curvature of 
the upper boundary influences the pressure distribution. It seems the two methods do not handle 
curvature in the same way. The unstructured shock is again located upstream of the structured 
one, but by just one cell this time. Because of the size of the local adapted cells, this difference 
is negligible. Furthermore, it does not occur as a result of the different limiters: the expressions 
given by Mulder and by Van Albada are similar, and it was verified that the layout of first order 
nodes, and the intensity of the limiters are identical in the shock vicinity using those two 
expressions. 

The Mach number varies from 0.66 to 1.3 then down to 0.71 on the axis, while it is up to 1.4 
on the wall. This variation generates different jumps of total pressure across the shock, which 
are respectively of 2.5% and of 3.5% (Figure 7). In this case, the total pressure is well conserved 
in isentropic regions, with only slight differences between the two approaches. The outlet total 
pressure levels predicted by each method are equal. It will be noticed that there are still over- and 
undershoots in the shock vicinity. 

These results establish that the approaches compute similar two-dimensional inviscid solutions 
as long as high order spatial schemes are used. Subsequent calculations presented in the paper 
are based on high order schemes. However, the error generated by such schemes within 
Shockwaves is borne in mind. 
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ERROR ON THE SLIP CONDITION 
Significant errors in shock position and total pressure profiles near the upper boundary were 
noticed for first order unstructured results (Figures 4 and 5). Two arguments could explain this. 
On the one hand, it is well known that for first order schemes, the Roe flux splitting computes 
more diffuse shocks than the Van Leer one, while it predicts sharper contact discontinuities20. 
On the other hand, the slip condition, and then the symmetry condition, implemented as a weak 
condition in the unstructured method lead to a non zero velocity normal to the walls. The dot 
product of the velocity and the unitary normal to the wall non-dimensionalized by the modulus 
of the velocity, is plotted in Figure 8, for first and second order accurate schemes in space. It 
shows that some fluid exits the computational domain in the convergent part of the nozzle. The 
noticeable oscillations seem to be related to those found on the total pressure profiles (Figure 
5). These errors contribute undoubtedly to the variations of the total pressure, increasing the 
numerical losses, and then shifting the shock position. It was verified that the slip condition 
implemented in the structured approach does not produce such an error. 

It will be noticed that the second order scheme is more accurate than the first order one. 
Indeed, the greater the number of nodes in the flux evaluation, the better the slip condition is 
enforced. However, there is still some fluid crossing the convergent wall. This problem could 
explain the overestimation of the upstream total pressure noticeable on the unstructured wall 
profile (Figure 7). Furthermore, the slip condition is not verified across the shock. This could 
be due to the weak approach used. 

ERROR GENERATION THROUGH THE SHOCK 
The results presented exhibit overshoots and undershoots across the shock, for structured and 
unstructured computations. This seems to be related to the generation of local errors when the 
Mach number varies from supersonic to subsonic. In this region, the upwinding changes and 
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the link between the zones is flawed. On the one hand, when the Mach number is higher than 
one, there is no upstream travelling information, and all the information is carried downstream. 
On the other hand, in the subsonic region, there are upstream and downstream travelling waves. 
Therefore because of the upwinding, there is one cell's interface between the zones, where 
supersonic downstream and subsonic upstream information are mixed in a non-physical way.. 
As the inviscid steady state implies the conservation of flux through the cells interfaces, the finite 
volume formulations based on this property modify the flow field at the centre of the cells to 
enforce this conservation, even if non-physical nodal solutions are computed. In this way, over- or 
undershoots can locally arise. 

To justify this, we subsequently demonstrate that it is not possible to conserve in the same 
time, the flux at the cells interfaces and at the nodes. We consider three mesh lines extracted at 
various height of the geometry, referenced as j=1, j=8 and j = 17, for first order structured 
computations. Mach number profiles, around the shock position, are plotted on Figure 9, and 
the difference between the local total temperature and the inlet total temperature, non-
dimensionalized by the inlet total temperature, is shown on Figure 10. This variable should be 
equal to zero for steady adiabatic flows. The following discussion is based on the argument of 
Van Leer dealing with how his flux splitting technique handles steady discontinuities21. The 
same notations are used. The supersonic pre-shock state is denoted L, the subsonic post-shock 
state R, and the interior states P and Q, such that zone P is supersonic and zone Q is subsonic. 
Considering Figure 10, we notice that errors occur only for nodes P and Q. Furthermore, the 
nearer to the sonic line these nodes are, the bigger the error. Variations upstream of L and 
downstream of R are due to the first order accuracy, and are not relevant to the above argument. 
Split fluxes in the flow direction, F+ and F-, are printed in Table 1, with Fl

++Fr
-, the built 

flux at each cells interface. For supersonic nodes, F+ equals the full flux F and F- is zero. 
Let be the flux imposed by the boundary conditions. L and R states are supposed known 

without errors, such that: 
F(qL) = F(qR) = (1) 
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Table 1 Split fluxes at nodes and at cells interfaces 

Node 

L(M > 1) 

P(M > 1) 

Q ( M < 1) 

R ( M < 1) 

F+ 

F(qd 

F(qP) 

F+(qQ) 

F+(qR) 

F-

0 

0 

F-(qQ) 

F-(qR) 

Fl
++Fr

-

F(qL) 

F(qP)+F-(qQ) 

F+(qQ)+F-(qR) 

This hypothesis is valid if the differences of total temperature between points L and R are 
negligible (Figure 10). 

At the interface PQ, we have: 
F(qP)+F-(qQ)= (2) 

On the other hand for the first order scheme: 
F(qR)=F+(qR)+F-(qR)= (3) 

so, the flux conservation at the interface QR: 

F+(qQ)+F-(qR)= (4) 
is equivalent to: 

F+(qQ)=F+(qR) (5) 
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For a one-dimensional flow, (5) reduces from 3 to 2 independent scalar equations, the 
Van Leer split energy flux being a function of the split mass and momentum fluxes. So we end up 
with 5 equations, (2) and (5), for 6 unknowns, qP and qQ, with one parameter being the sub-grid 
shock position between P and Q. For multi-dimensional flows, the geometry of the nozzle, and 
the inlet and outlet boundary conditions, determine the shock position. So the momentum 
equations in the transverse directions replace the previous parameter. In three-dimensions, we 
end up with 10 equations for 10 unknowns. 

If state P is such that the flux is conserved, F(qP)= then according to equation (2), F-(qQ)=0, 
which implies that M(qQ)>1, whereas zone Q is supposed to be subsonic. Therefore, the flux 
could not be conserved for node P, and then for node Q. This shows that it is not possible to 
conserve the numerical flux at the same time at the cells interfaces and at the nodes, through a 
shock. 

This argument is developed with the Van Leer flux vector splitting, but its conclusion is 
nevertheless more general, and it is valid for each method building independent left and right 
states for a cell interface, according to the Mach number at the cell centre. There will always 
be an error when the shock is crossed. The Roe splitting used in the unstructured approach 
shows the same behaviour. 

It will be noticed that it was not possible to obtain convergence of the structured computation 
if the outlet static pressure was fixed. Non reflective outlet conditions had to be used22. This is 
related to the longitudinal oscillation of the shock between two cells, because of this error 
introduced by the flux splitting scheme across the shock. Transversal instabilities exist when the 
sub-grid shock position changes in the height of the nozzle. Waves are generated by this oscillation, 
and a coupling with the outlet appears, preventing convergence. Even in this case, small errors 
are visible on the total pressure levels (Figure 7). This drawback does not appear in the first 
order computation because of the significiant numerical viscosity which damps the oscillations. 
The implicit scheme in time used in unstructured computation has the same 'beneficial' influence, 
taking advantage of larger time steps. 

TWO-DIMENSIONAL TURBULENT COMPUTATIONS 
The next step involves the simulation of the transonic turbulent flow field in the previous 
two-dimensional geometry. The viscous boundary layer on the no-slip bump wall is now taken 
into account. Uniform inlet static pressure is imposed. The velocity is also assumed uniform 
throughout the height, except on the wall where it is zero. The total pressure profile is no longer 
uniform in order to include the inlet boundary layer. The total temperature is unchanged, but 
the outlet static pressure is decreased by 3% to counterbalance extra viscous losses and to ensure 
the same shock position on the axis (Figure 2). 

Comparing iso-Mach number lines for inviscid and turbulent computations (Figure 2), we 
notice on the one hand that the core flow up to the half height is unchanged. On the other 
hand, differences are confined to near the wall, and mainly after the shock/boundary layer 
interaction which produces a low speed region downstream. Because the Mach number in the 
turbulent case is lower than 1.35, the pressure gradient induced by the shock contributes only 
to thicken the boundary layer, and no recirculation zone is generated. The total pressure levels 
exhibit the same behaviour (Figure 11). Along the axis the inviscid and turbulent results are 
similar, implying that viscous effects are negligible in this region. Losses in the boundary layer, 
however are around 40%, and its thickening downstream of the shock is evident. As the Mach 
number in the inviscid case increases from the axis to the wall due to curvature, the shock 
strength, and hence the pressure jump, also increases. The Mach number in the turbulent case 
increases up to the half height, and then decreases because of viscous effects. The total pressure 
jump shows the same trend. This explains why in the turbulent case losses are lower near the 
boundary layer. 

The structured simulation is performed using a mixed scheme which hybridizes according 
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Mach number the Van Leer flux vector splitting technique and a classical centred scheme5. 
For Mach numbers higher than 0.6, the Van Leer scheme is used alone, whereas at Mach zero, 
only the centred scheme is effective, with a smooth transition from M=0.6 to M=0.0. The 
explicit artificial dissipation required at low Mach numbers is set to one twentieth of its maximum 
value. The non-slip condition is imposed at the wall. For the unstructured computation, the 
inlet k and ε levels are supposed constant, and are evaluated from a free stream turbulence level 
of 4%. A small wall distance of 8.10 -5 has been chosen for the upper wall, to ensure a good 
description of the turbulent boundary layer by the wall laws. 

The aim is to compare the two methods when turbulent effects are included, knowing that 
the flow fields achieved by high order inviscid computations were very similar. 

Mach number levels are plotted in Figure 12. Slight differences are visible on iso-lines 1.1 and 
1.2 which are more rounded near the wall for unstructured results, and the very low speed region 
downstream of the shock is shorter in the structured calculations. The main discrepancies however 
are in the shock vicinity. From three quarters of the height to the edge of the boundary layer, 
the iso-line 1.3 is substantially different. In this region, the unstructured Mach number is lower, 
so the shock is weaker, and the downstream velocity higher. The iso-line 0.8 being shifted to 
the right is then coherent. The total pressure levels are in agreement with these results (Figure 
13). Whereas the levels are close near the axis, the jump across the shock in the boundary layer 
vicinity is lower in the unstructured simulation, characterizing a weaker shock. It thus appears 
that the k-ε model is more diffusive near the outer edge of the boundary layer. This can be 
explained by the imposed free stream turbulence that is required at inlet. Indeed, the algebraic 
model used in the structured computation is effective only inside the boundary layer, whereas 
the k-ε model acts everywhere that gradients are significant, particularly in the vicinity of the. 



900 S. AUBERT ET AL. 

boundary layer. The lower the free stream turbulence level is, the lower the dissipation should 
be. This assumption has not been checked yet, but some verifications are in progress. 

Considering the iso-static pressure lines (Figure 14), we see very good agreement between the 
approaches, mainly from the inlet to the shock, where the turbulence influence is small and the 
flow nearly inviscid. The only significant differences are in the vicinity of the shock/boundary 
layer interaction due to the shock strength variations previously described. The static pressure 
profiles along the bump exhibit the same behaviour (Figures 15 and 16). It will be noticed that 
the unstructured shock is shifted to the left, which is consistent with a lower Mach number, and 
that the post-shock pressure rise is slower, consistent with a longer low velocity region after the 
shock. 

Velocity profiles at the throat are given in Figure 17, Y=0.355 being the half throat height. 
For the unstructured calculations, wall laws are used to compute a friction velocity, Vw 0.5 at 
Yw=0.355, which is half of the free stream velocity, V 1.0 at Y=0.0. This may explain the 
differences between the results for 7 [0.35; 0.355]. Otherwise, there is a very good agreement 
in this location, where the flow is nearly inviscid with a very thin boundary layer. The same 
data near the outlet are plotted in Figure 18. At this location, the velocity profile for 7 [0.35; 0.39] 
is distorted, due to the shock/boundary layer interaction which induces a velocity defect. The 
methods predict nearly the same velocity distribution. In the structured calculations, the velocity 
recovers just a bit faster, which is consistent with a shorter low velocity region after the shock. 

According to these results, we can state that both approaches are able to compute the interaction 
of the shock with the thin boundary layer developing on the bump. The calculated flow fields 
are fairly similar, and consistent from a physical point of view. The slight discrepancies noticed 
should be related to the models of turbulence used, which unfortunately strongly affect the 
numerical simulation. It appears that the free stream turbulence level modifies the near boundary 
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layer region when the k-ε model is used. On the other hand, the algebraic model appears to 
produce a higher level of eddy viscosity, which damps more quickly the influence of the 
shock/boundary layer interaction. 

THREE-DIMENSIONAL TURBULENT COMPUTATIONS 
Last step involves the simulation of the transonic turbulent flow field developing in the 
three-dimensional geometry (Figure 1). No-slip boundary are imposed on the bump and on the 
lateral flat wall, and slip conditions are imposed on the two planes of symmetry. The inlet and 
outlet boundary conditions are unchanged compared to those of the two-dimensional turbulent 
computations, except the inlet velocity profile, which now takes into account a very thick 
boundary layer on the lateral flat wall. Its initial thickness equals 0.1. 

Only unstructured results are available until now, and are presented here as preliminary ones. 
These are compared with the previous two-dimensional turbulent unstructured solution. The 
iso-static pressure lines in the vertical plane of symmetry are presented in Figure 19. They are 
similar to those shown in Figure 14, which indicates that the flow is quasi-bidimensional in the 
vicinity of this section. This is not surprising because the thick boundary layer does not reach 
the core of the nozzle even though it becomes larger in the interaction zone with the shock. On 
the other hand, in the corner of the two solid walls, there is a strong interaction between the 
shock and the boundary layers, which induces the formation of a three-dimensional vortex with 
a large spreading of the initial inviscid shock. This is shown in Figure 20, which presents the 
iso-static pressure values on the boundaries of the computation domain. Further comparisons 
are, however, necessary to validate those complex three-dimensional structures and this 
preliminary solution. 

CONCLUSION 
Two numerical methods based on high order finite volume formulations and upwind schemes 
were used to compute the two- and three-dimensional steady flow field in a transonic nozzle. 
Previous comparisons on shock tube problems had produced similar results for the two schemes. 
Our present purpose was to extend this work to the calculation of a more complex situation. 

Inviscid computations were carried out with first order accurate schemes in space. They 
provided significantly different results. The chosen flux splitting, and the slip condition treatment, 
may explain this behaviour. Furthermore, we have attempted to understand the mechanism 
generating numerical errors within a shock wave. 

On the other hand, the two approaches produced very similar results when higher order schemes 
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were used. This is an important result. Indeed, good agreement for inviscid computations is 
required, before considering the simulation of turbulent flows. 

The next step was then a simulation of the two-dimensional interaction of the shock with the 
thin boundary layer developing on a bump. The core flows achieved were again similar, as well 
as the predicted boundary layer behaviour after the shock. Good agreement was obtained 
considering its rapid thickening and the downstream velocity recovery. However, slight 
discrepancies occurred in the main flow, near the outer edge of the boundary layer. These were 
strongly related to the way the turbulence model deals with the free stream turbulence. 

The last step was to evaluate the behaviour of the unstructured method on the simulation of 
the whole three-dimensional nozzle. The results were close to the two-dimensional ones in the 
vertical plane of symmetry, and a large three-dimensional vortex was found in the upper right 
corner of the geometry, in the interaction zone of the shock with the two boundary layers. These 
numerical results must be confirmed by further comparisons between structured and unstructured 
methods. This is a work in progress. 
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